Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+10x+x=-2
Use the distributive property to multiply 5x by x+2.
5x^{2}+11x=-2
Combine 10x and x to get 11x.
5x^{2}+11x+2=0
Add 2 to both sides.
x=\frac{-11±\sqrt{11^{2}-4\times 5\times 2}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 11 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 5\times 2}}{2\times 5}
Square 11.
x=\frac{-11±\sqrt{121-20\times 2}}{2\times 5}
Multiply -4 times 5.
x=\frac{-11±\sqrt{121-40}}{2\times 5}
Multiply -20 times 2.
x=\frac{-11±\sqrt{81}}{2\times 5}
Add 121 to -40.
x=\frac{-11±9}{2\times 5}
Take the square root of 81.
x=\frac{-11±9}{10}
Multiply 2 times 5.
x=-\frac{2}{10}
Now solve the equation x=\frac{-11±9}{10} when ± is plus. Add -11 to 9.
x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{20}{10}
Now solve the equation x=\frac{-11±9}{10} when ± is minus. Subtract 9 from -11.
x=-2
Divide -20 by 10.
x=-\frac{1}{5} x=-2
The equation is now solved.
5x^{2}+10x+x=-2
Use the distributive property to multiply 5x by x+2.
5x^{2}+11x=-2
Combine 10x and x to get 11x.
\frac{5x^{2}+11x}{5}=-\frac{2}{5}
Divide both sides by 5.
x^{2}+\frac{11}{5}x=-\frac{2}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{11}{5}x+\left(\frac{11}{10}\right)^{2}=-\frac{2}{5}+\left(\frac{11}{10}\right)^{2}
Divide \frac{11}{5}, the coefficient of the x term, by 2 to get \frac{11}{10}. Then add the square of \frac{11}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{5}x+\frac{121}{100}=-\frac{2}{5}+\frac{121}{100}
Square \frac{11}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{5}x+\frac{121}{100}=\frac{81}{100}
Add -\frac{2}{5} to \frac{121}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{10}\right)^{2}=\frac{81}{100}
Factor x^{2}+\frac{11}{5}x+\frac{121}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
x+\frac{11}{10}=\frac{9}{10} x+\frac{11}{10}=-\frac{9}{10}
Simplify.
x=-\frac{1}{5} x=-2
Subtract \frac{11}{10} from both sides of the equation.