Solve for x
x=\frac{28y}{69}+\frac{35}{23}
Solve for y
y=\frac{69x}{28}-\frac{15}{4}
Graph
Share
Copied to clipboard
-\frac{345}{7}x+20y=-75
Multiply 5 and -\frac{69}{7} to get -\frac{345}{7}.
-\frac{345}{7}x=-75-20y
Subtract 20y from both sides.
-\frac{345}{7}x=-20y-75
The equation is in standard form.
\frac{-\frac{345}{7}x}{-\frac{345}{7}}=\frac{-20y-75}{-\frac{345}{7}}
Divide both sides of the equation by -\frac{345}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-20y-75}{-\frac{345}{7}}
Dividing by -\frac{345}{7} undoes the multiplication by -\frac{345}{7}.
x=\frac{28y}{69}+\frac{35}{23}
Divide -75-20y by -\frac{345}{7} by multiplying -75-20y by the reciprocal of -\frac{345}{7}.
-\frac{345}{7}x+20y=-75
Multiply 5 and -\frac{69}{7} to get -\frac{345}{7}.
20y=-75+\frac{345}{7}x
Add \frac{345}{7}x to both sides.
20y=\frac{345x}{7}-75
The equation is in standard form.
\frac{20y}{20}=\frac{\frac{345x}{7}-75}{20}
Divide both sides by 20.
y=\frac{\frac{345x}{7}-75}{20}
Dividing by 20 undoes the multiplication by 20.
y=\frac{69x}{28}-\frac{15}{4}
Divide -75+\frac{345x}{7} by 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}