Evaluate
\frac{x\left(166-15x\right)}{4}
Expand
-\frac{15x^{2}}{4}+\frac{83x}{2}
Graph
Share
Copied to clipboard
15x\left(3-\frac{x}{4}\right)-\frac{7x}{2}
Multiply 5 and 3 to get 15.
15x\left(\frac{3\times 4}{4}-\frac{x}{4}\right)-\frac{7x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{4}{4}.
15x\times \frac{3\times 4-x}{4}-\frac{7x}{2}
Since \frac{3\times 4}{4} and \frac{x}{4} have the same denominator, subtract them by subtracting their numerators.
15x\times \frac{12-x}{4}-\frac{7x}{2}
Do the multiplications in 3\times 4-x.
\frac{15\left(12-x\right)}{4}x-\frac{7x}{2}
Express 15\times \frac{12-x}{4} as a single fraction.
\frac{180-15x}{4}x-\frac{7x}{2}
Use the distributive property to multiply 15 by 12-x.
\frac{\left(180-15x\right)x}{4}-\frac{7x}{2}
Express \frac{180-15x}{4}x as a single fraction.
\frac{\left(180-15x\right)x}{4}-\frac{2\times 7x}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{7x}{2} times \frac{2}{2}.
\frac{\left(180-15x\right)x-2\times 7x}{4}
Since \frac{\left(180-15x\right)x}{4} and \frac{2\times 7x}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{180x-15x^{2}-14x}{4}
Do the multiplications in \left(180-15x\right)x-2\times 7x.
\frac{166x-15x^{2}}{4}
Combine like terms in 180x-15x^{2}-14x.
15x\left(3-\frac{x}{4}\right)-\frac{7x}{2}
Multiply 5 and 3 to get 15.
15x\left(\frac{3\times 4}{4}-\frac{x}{4}\right)-\frac{7x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{4}{4}.
15x\times \frac{3\times 4-x}{4}-\frac{7x}{2}
Since \frac{3\times 4}{4} and \frac{x}{4} have the same denominator, subtract them by subtracting their numerators.
15x\times \frac{12-x}{4}-\frac{7x}{2}
Do the multiplications in 3\times 4-x.
\frac{15\left(12-x\right)}{4}x-\frac{7x}{2}
Express 15\times \frac{12-x}{4} as a single fraction.
\frac{180-15x}{4}x-\frac{7x}{2}
Use the distributive property to multiply 15 by 12-x.
\frac{\left(180-15x\right)x}{4}-\frac{7x}{2}
Express \frac{180-15x}{4}x as a single fraction.
\frac{\left(180-15x\right)x}{4}-\frac{2\times 7x}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{7x}{2} times \frac{2}{2}.
\frac{\left(180-15x\right)x-2\times 7x}{4}
Since \frac{\left(180-15x\right)x}{4} and \frac{2\times 7x}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{180x-15x^{2}-14x}{4}
Do the multiplications in \left(180-15x\right)x-2\times 7x.
\frac{166x-15x^{2}}{4}
Combine like terms in 180x-15x^{2}-14x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}