Evaluate
\frac{9a^{2}y^{3}x^{5}}{2}
Differentiate w.r.t. x
\frac{45a^{2}y^{3}x^{4}}{2}
Share
Copied to clipboard
5x^{2}\left(-\frac{1}{3}\right)a\left(-2.25\right)axy\times 1.2x^{2}y^{2}
Multiply x and x to get x^{2}.
5x^{3}\left(-\frac{1}{3}\right)a\left(-2.25\right)ay\times 1.2x^{2}y^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
5x^{5}\left(-\frac{1}{3}\right)a\left(-2.25\right)ay\times 1.2y^{2}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
5x^{5}\left(-\frac{1}{3}\right)a^{2}\left(-2.25\right)y\times 1.2y^{2}
Multiply a and a to get a^{2}.
5x^{5}\left(-\frac{1}{3}\right)a^{2}\left(-2.25\right)y^{3}\times 1.2
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-\frac{5}{3}x^{5}a^{2}\left(-2.25\right)y^{3}\times 1.2
Multiply 5 and -\frac{1}{3} to get -\frac{5}{3}.
\frac{15}{4}x^{5}a^{2}y^{3}\times 1.2
Multiply -\frac{5}{3} and -2.25 to get \frac{15}{4}.
\frac{9}{2}x^{5}a^{2}y^{3}
Multiply \frac{15}{4} and 1.2 to get \frac{9}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}