Evaluate
3y^{6}x^{7}
Differentiate w.r.t. x
21\left(xy\right)^{6}
Share
Copied to clipboard
\frac{\frac{5\times 3}{2xy^{3}}x^{6}y^{5}}{\frac{5}{2}}x^{2}y^{4}
Express 5\times \frac{3}{2xy^{3}} as a single fraction.
\frac{\frac{15}{2xy^{3}}x^{6}y^{5}}{\frac{5}{2}}x^{2}y^{4}
Multiply 5 and 3 to get 15.
\frac{\frac{15x^{6}}{2xy^{3}}y^{5}}{\frac{5}{2}}x^{2}y^{4}
Express \frac{15}{2xy^{3}}x^{6} as a single fraction.
\frac{\frac{15x^{5}}{2y^{3}}y^{5}}{\frac{5}{2}}x^{2}y^{4}
Cancel out x in both numerator and denominator.
\frac{\frac{15x^{5}y^{5}}{2y^{3}}}{\frac{5}{2}}x^{2}y^{4}
Express \frac{15x^{5}}{2y^{3}}y^{5} as a single fraction.
\frac{\frac{15y^{2}x^{5}}{2}}{\frac{5}{2}}x^{2}y^{4}
Cancel out y^{3} in both numerator and denominator.
\frac{15y^{2}x^{5}\times 2}{2\times 5}x^{2}y^{4}
Divide \frac{15y^{2}x^{5}}{2} by \frac{5}{2} by multiplying \frac{15y^{2}x^{5}}{2} by the reciprocal of \frac{5}{2}.
3y^{2}x^{5}x^{2}y^{4}
Cancel out 2\times 5 in both numerator and denominator.
3y^{2}x^{7}y^{4}
To multiply powers of the same base, add their exponents. Add 5 and 2 to get 7.
3y^{6}x^{7}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}