Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5t^{2}-3t+2=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\times 2}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, -3 for b, and 2 for c in the quadratic formula.
t=\frac{3±\sqrt{-31}}{10}
Do the calculations.
t=\frac{3+\sqrt{31}i}{10} t=\frac{-\sqrt{31}i+3}{10}
Solve the equation t=\frac{3±\sqrt{-31}}{10} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{250}e^{\frac{\arctan(\frac{\sqrt{31}}{3})i+2\pi i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{\frac{\arctan(\frac{\sqrt{31}}{3})i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{-\frac{\arctan(\frac{\sqrt{31}}{3})i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{\frac{-\arctan(\frac{\sqrt{31}}{3})i+2\pi i}{2}}}{5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
5t^{2}-3t+2=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\times 2}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, -3 for b, and 2 for c in the quadratic formula.
t=\frac{3±\sqrt{-31}}{10}
Do the calculations.
t\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x\in \emptyset
Since t=x^{2}, the original equation does not have any solutions.