Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{4}+3x^{2}+1+1=0
Add 1 to both sides.
5x^{4}+3x^{2}+2=0
Add 1 and 1 to get 2.
5t^{2}+3t+2=0
Substitute t for x^{2}.
t=\frac{-3±\sqrt{3^{2}-4\times 5\times 2}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, 3 for b, and 2 for c in the quadratic formula.
t=\frac{-3±\sqrt{-31}}{10}
Do the calculations.
t=\frac{-3+\sqrt{31}i}{10} t=\frac{-\sqrt{31}i-3}{10}
Solve the equation t=\frac{-3±\sqrt{-31}}{10} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{250}e^{\frac{-\arctan(\frac{\sqrt{31}}{3})i+3\pi i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{\frac{-\arctan(\frac{\sqrt{31}}{3})i+\pi i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{\frac{\arctan(\frac{\sqrt{31}}{3})i+3\pi i}{2}}}{5} x=\frac{\sqrt[4]{250}e^{\frac{\left(\arctan(\frac{\sqrt{31}}{3})+\pi \right)i}{2}}}{5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.