Solve for x (complex solution)
x=\sqrt{13}-4\approx -0.394448725
x=-\left(\sqrt{13}+4\right)\approx -7.605551275
Solve for x
x=\sqrt{13}-4\approx -0.394448725
x=-\sqrt{13}-4\approx -7.605551275
Graph
Share
Copied to clipboard
-4x^{2}-32x-12=0
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -32 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024+16\left(-12\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-32\right)±\sqrt{1024-192}}{2\left(-4\right)}
Multiply 16 times -12.
x=\frac{-\left(-32\right)±\sqrt{832}}{2\left(-4\right)}
Add 1024 to -192.
x=\frac{-\left(-32\right)±8\sqrt{13}}{2\left(-4\right)}
Take the square root of 832.
x=\frac{32±8\sqrt{13}}{2\left(-4\right)}
The opposite of -32 is 32.
x=\frac{32±8\sqrt{13}}{-8}
Multiply 2 times -4.
x=\frac{8\sqrt{13}+32}{-8}
Now solve the equation x=\frac{32±8\sqrt{13}}{-8} when ± is plus. Add 32 to 8\sqrt{13}.
x=-\left(\sqrt{13}+4\right)
Divide 32+8\sqrt{13} by -8.
x=\frac{32-8\sqrt{13}}{-8}
Now solve the equation x=\frac{32±8\sqrt{13}}{-8} when ± is minus. Subtract 8\sqrt{13} from 32.
x=\sqrt{13}-4
Divide 32-8\sqrt{13} by -8.
x=-\left(\sqrt{13}+4\right) x=\sqrt{13}-4
The equation is now solved.
-4x^{2}-32x-12=0
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
-4x^{2}-32x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{-4x^{2}-32x}{-4}=\frac{12}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{32}{-4}\right)x=\frac{12}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+8x=\frac{12}{-4}
Divide -32 by -4.
x^{2}+8x=-3
Divide 12 by -4.
x^{2}+8x+4^{2}=-3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-3+16
Square 4.
x^{2}+8x+16=13
Add -3 to 16.
\left(x+4\right)^{2}=13
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+4=\sqrt{13} x+4=-\sqrt{13}
Simplify.
x=\sqrt{13}-4 x=-\sqrt{13}-4
Subtract 4 from both sides of the equation.
-4x^{2}-32x-12=0
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -32 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024+16\left(-12\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-32\right)±\sqrt{1024-192}}{2\left(-4\right)}
Multiply 16 times -12.
x=\frac{-\left(-32\right)±\sqrt{832}}{2\left(-4\right)}
Add 1024 to -192.
x=\frac{-\left(-32\right)±8\sqrt{13}}{2\left(-4\right)}
Take the square root of 832.
x=\frac{32±8\sqrt{13}}{2\left(-4\right)}
The opposite of -32 is 32.
x=\frac{32±8\sqrt{13}}{-8}
Multiply 2 times -4.
x=\frac{8\sqrt{13}+32}{-8}
Now solve the equation x=\frac{32±8\sqrt{13}}{-8} when ± is plus. Add 32 to 8\sqrt{13}.
x=-\left(\sqrt{13}+4\right)
Divide 32+8\sqrt{13} by -8.
x=\frac{32-8\sqrt{13}}{-8}
Now solve the equation x=\frac{32±8\sqrt{13}}{-8} when ± is minus. Subtract 8\sqrt{13} from 32.
x=\sqrt{13}-4
Divide 32-8\sqrt{13} by -8.
x=-\left(\sqrt{13}+4\right) x=\sqrt{13}-4
The equation is now solved.
-4x^{2}-32x-12=0
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
-4x^{2}-32x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{-4x^{2}-32x}{-4}=\frac{12}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{32}{-4}\right)x=\frac{12}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+8x=\frac{12}{-4}
Divide -32 by -4.
x^{2}+8x=-3
Divide 12 by -4.
x^{2}+8x+4^{2}=-3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-3+16
Square 4.
x^{2}+8x+16=13
Add -3 to 16.
\left(x+4\right)^{2}=13
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+4=\sqrt{13} x+4=-\sqrt{13}
Simplify.
x=\sqrt{13}-4 x=-\sqrt{13}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}