Solve for x
x = \frac{2 \sqrt{13786} + 242}{5} \approx 95.365519267
x = \frac{242 - 2 \sqrt{13786}}{5} \approx 1.434480733
Graph
Share
Copied to clipboard
5x^{2}-484x+684=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-484\right)±\sqrt{\left(-484\right)^{2}-4\times 5\times 684}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -484 for b, and 684 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-484\right)±\sqrt{234256-4\times 5\times 684}}{2\times 5}
Square -484.
x=\frac{-\left(-484\right)±\sqrt{234256-20\times 684}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-484\right)±\sqrt{234256-13680}}{2\times 5}
Multiply -20 times 684.
x=\frac{-\left(-484\right)±\sqrt{220576}}{2\times 5}
Add 234256 to -13680.
x=\frac{-\left(-484\right)±4\sqrt{13786}}{2\times 5}
Take the square root of 220576.
x=\frac{484±4\sqrt{13786}}{2\times 5}
The opposite of -484 is 484.
x=\frac{484±4\sqrt{13786}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{13786}+484}{10}
Now solve the equation x=\frac{484±4\sqrt{13786}}{10} when ± is plus. Add 484 to 4\sqrt{13786}.
x=\frac{2\sqrt{13786}+242}{5}
Divide 484+4\sqrt{13786} by 10.
x=\frac{484-4\sqrt{13786}}{10}
Now solve the equation x=\frac{484±4\sqrt{13786}}{10} when ± is minus. Subtract 4\sqrt{13786} from 484.
x=\frac{242-2\sqrt{13786}}{5}
Divide 484-4\sqrt{13786} by 10.
x=\frac{2\sqrt{13786}+242}{5} x=\frac{242-2\sqrt{13786}}{5}
The equation is now solved.
5x^{2}-484x+684=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-484x+684-684=-684
Subtract 684 from both sides of the equation.
5x^{2}-484x=-684
Subtracting 684 from itself leaves 0.
\frac{5x^{2}-484x}{5}=-\frac{684}{5}
Divide both sides by 5.
x^{2}-\frac{484}{5}x=-\frac{684}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{484}{5}x+\left(-\frac{242}{5}\right)^{2}=-\frac{684}{5}+\left(-\frac{242}{5}\right)^{2}
Divide -\frac{484}{5}, the coefficient of the x term, by 2 to get -\frac{242}{5}. Then add the square of -\frac{242}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{484}{5}x+\frac{58564}{25}=-\frac{684}{5}+\frac{58564}{25}
Square -\frac{242}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{484}{5}x+\frac{58564}{25}=\frac{55144}{25}
Add -\frac{684}{5} to \frac{58564}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{242}{5}\right)^{2}=\frac{55144}{25}
Factor x^{2}-\frac{484}{5}x+\frac{58564}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{242}{5}\right)^{2}}=\sqrt{\frac{55144}{25}}
Take the square root of both sides of the equation.
x-\frac{242}{5}=\frac{2\sqrt{13786}}{5} x-\frac{242}{5}=-\frac{2\sqrt{13786}}{5}
Simplify.
x=\frac{2\sqrt{13786}+242}{5} x=\frac{242-2\sqrt{13786}}{5}
Add \frac{242}{5} to both sides of the equation.
x ^ 2 -\frac{484}{5}x +\frac{684}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = \frac{484}{5} rs = \frac{684}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{242}{5} - u s = \frac{242}{5} + u
Two numbers r and s sum up to \frac{484}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{484}{5} = \frac{242}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{242}{5} - u) (\frac{242}{5} + u) = \frac{684}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{684}{5}
\frac{58564}{25} - u^2 = \frac{684}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{684}{5}-\frac{58564}{25} = -\frac{55144}{25}
Simplify the expression by subtracting \frac{58564}{25} on both sides
u^2 = \frac{55144}{25} u = \pm\sqrt{\frac{55144}{25}} = \pm \frac{\sqrt{55144}}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{242}{5} - \frac{\sqrt{55144}}{5} = 1.434 s = \frac{242}{5} + \frac{\sqrt{55144}}{5} = 95.366
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}