Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-4+x=0
Add x to both sides.
5x^{2}+x-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=5\left(-4\right)=-20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=-4 b=5
The solution is the pair that gives sum 1.
\left(5x^{2}-4x\right)+\left(5x-4\right)
Rewrite 5x^{2}+x-4 as \left(5x^{2}-4x\right)+\left(5x-4\right).
x\left(5x-4\right)+5x-4
Factor out x in 5x^{2}-4x.
\left(5x-4\right)\left(x+1\right)
Factor out common term 5x-4 by using distributive property.
x=\frac{4}{5} x=-1
To find equation solutions, solve 5x-4=0 and x+1=0.
5x^{2}-4+x=0
Add x to both sides.
5x^{2}+x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 5\left(-4\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 5\left(-4\right)}}{2\times 5}
Square 1.
x=\frac{-1±\sqrt{1-20\left(-4\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-1±\sqrt{1+80}}{2\times 5}
Multiply -20 times -4.
x=\frac{-1±\sqrt{81}}{2\times 5}
Add 1 to 80.
x=\frac{-1±9}{2\times 5}
Take the square root of 81.
x=\frac{-1±9}{10}
Multiply 2 times 5.
x=\frac{8}{10}
Now solve the equation x=\frac{-1±9}{10} when ± is plus. Add -1 to 9.
x=\frac{4}{5}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{10}{10}
Now solve the equation x=\frac{-1±9}{10} when ± is minus. Subtract 9 from -1.
x=-1
Divide -10 by 10.
x=\frac{4}{5} x=-1
The equation is now solved.
5x^{2}-4+x=0
Add x to both sides.
5x^{2}+x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{5x^{2}+x}{5}=\frac{4}{5}
Divide both sides by 5.
x^{2}+\frac{1}{5}x=\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{4}{5}+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{4}{5}+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{81}{100}
Add \frac{4}{5} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{10}\right)^{2}=\frac{81}{100}
Factor x^{2}+\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{10}=\frac{9}{10} x+\frac{1}{10}=-\frac{9}{10}
Simplify.
x=\frac{4}{5} x=-1
Subtract \frac{1}{10} from both sides of the equation.