Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-3x=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}-3x-9=9-9
Subtract 9 from both sides of the equation.
5x^{2}-3x-9=0
Subtracting 9 from itself leaves 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-9\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -3 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-9\right)}}{2\times 5}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-9\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-3\right)±\sqrt{9+180}}{2\times 5}
Multiply -20 times -9.
x=\frac{-\left(-3\right)±\sqrt{189}}{2\times 5}
Add 9 to 180.
x=\frac{-\left(-3\right)±3\sqrt{21}}{2\times 5}
Take the square root of 189.
x=\frac{3±3\sqrt{21}}{2\times 5}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{21}}{10}
Multiply 2 times 5.
x=\frac{3\sqrt{21}+3}{10}
Now solve the equation x=\frac{3±3\sqrt{21}}{10} when ± is plus. Add 3 to 3\sqrt{21}.
x=\frac{3-3\sqrt{21}}{10}
Now solve the equation x=\frac{3±3\sqrt{21}}{10} when ± is minus. Subtract 3\sqrt{21} from 3.
x=\frac{3\sqrt{21}+3}{10} x=\frac{3-3\sqrt{21}}{10}
The equation is now solved.
5x^{2}-3x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-3x}{5}=\frac{9}{5}
Divide both sides by 5.
x^{2}-\frac{3}{5}x=\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{9}{5}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{9}{5}+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{189}{100}
Add \frac{9}{5} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{10}\right)^{2}=\frac{189}{100}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{189}{100}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{3\sqrt{21}}{10} x-\frac{3}{10}=-\frac{3\sqrt{21}}{10}
Simplify.
x=\frac{3\sqrt{21}+3}{10} x=\frac{3-3\sqrt{21}}{10}
Add \frac{3}{10} to both sides of the equation.