Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}=10+3
Add 3 to both sides.
5x^{2}=13
Add 10 and 3 to get 13.
x^{2}=\frac{13}{5}
Divide both sides by 5.
x=\frac{\sqrt{65}}{5} x=-\frac{\sqrt{65}}{5}
Take the square root of both sides of the equation.
5x^{2}-3-10=0
Subtract 10 from both sides.
5x^{2}-13=0
Subtract 10 from -3 to get -13.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-13\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-13\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-13\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{260}}{2\times 5}
Multiply -20 times -13.
x=\frac{0±2\sqrt{65}}{2\times 5}
Take the square root of 260.
x=\frac{0±2\sqrt{65}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{65}}{5}
Now solve the equation x=\frac{0±2\sqrt{65}}{10} when ± is plus.
x=-\frac{\sqrt{65}}{5}
Now solve the equation x=\frac{0±2\sqrt{65}}{10} when ± is minus.
x=\frac{\sqrt{65}}{5} x=-\frac{\sqrt{65}}{5}
The equation is now solved.