Solve for x
x = \frac{3 \sqrt{33} + 17}{2} \approx 17.11684397
x=\frac{17-3\sqrt{33}}{2}\approx -0.11684397
Graph
Share
Copied to clipboard
5x^{2}-85x-10=0
Multiply 17 and 5 to get 85.
x=\frac{-\left(-85\right)±\sqrt{\left(-85\right)^{2}-4\times 5\left(-10\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -85 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-85\right)±\sqrt{7225-4\times 5\left(-10\right)}}{2\times 5}
Square -85.
x=\frac{-\left(-85\right)±\sqrt{7225-20\left(-10\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-85\right)±\sqrt{7225+200}}{2\times 5}
Multiply -20 times -10.
x=\frac{-\left(-85\right)±\sqrt{7425}}{2\times 5}
Add 7225 to 200.
x=\frac{-\left(-85\right)±15\sqrt{33}}{2\times 5}
Take the square root of 7425.
x=\frac{85±15\sqrt{33}}{2\times 5}
The opposite of -85 is 85.
x=\frac{85±15\sqrt{33}}{10}
Multiply 2 times 5.
x=\frac{15\sqrt{33}+85}{10}
Now solve the equation x=\frac{85±15\sqrt{33}}{10} when ± is plus. Add 85 to 15\sqrt{33}.
x=\frac{3\sqrt{33}+17}{2}
Divide 85+15\sqrt{33} by 10.
x=\frac{85-15\sqrt{33}}{10}
Now solve the equation x=\frac{85±15\sqrt{33}}{10} when ± is minus. Subtract 15\sqrt{33} from 85.
x=\frac{17-3\sqrt{33}}{2}
Divide 85-15\sqrt{33} by 10.
x=\frac{3\sqrt{33}+17}{2} x=\frac{17-3\sqrt{33}}{2}
The equation is now solved.
5x^{2}-85x-10=0
Multiply 17 and 5 to get 85.
5x^{2}-85x=10
Add 10 to both sides. Anything plus zero gives itself.
\frac{5x^{2}-85x}{5}=\frac{10}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{85}{5}\right)x=\frac{10}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-17x=\frac{10}{5}
Divide -85 by 5.
x^{2}-17x=2
Divide 10 by 5.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=2+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=2+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{297}{4}
Add 2 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{297}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{297}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{3\sqrt{33}}{2} x-\frac{17}{2}=-\frac{3\sqrt{33}}{2}
Simplify.
x=\frac{3\sqrt{33}+17}{2} x=\frac{17-3\sqrt{33}}{2}
Add \frac{17}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}