Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}-3x\right)
Factor out 5.
x\left(x-3\right)
Consider x^{2}-3x. Factor out x.
5x\left(x-3\right)
Rewrite the complete factored expression.
5x^{2}-15x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±15}{2\times 5}
Take the square root of \left(-15\right)^{2}.
x=\frac{15±15}{2\times 5}
The opposite of -15 is 15.
x=\frac{15±15}{10}
Multiply 2 times 5.
x=\frac{30}{10}
Now solve the equation x=\frac{15±15}{10} when ± is plus. Add 15 to 15.
x=3
Divide 30 by 10.
x=\frac{0}{10}
Now solve the equation x=\frac{15±15}{10} when ± is minus. Subtract 15 from 15.
x=0
Divide 0 by 10.
5x^{2}-15x=5\left(x-3\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 0 for x_{2}.