Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-125=8x^{2}-34x-30
Use the distributive property to multiply 4x+3 by 2x-10 and combine like terms.
5x^{2}-125-8x^{2}=-34x-30
Subtract 8x^{2} from both sides.
-3x^{2}-125=-34x-30
Combine 5x^{2} and -8x^{2} to get -3x^{2}.
-3x^{2}-125+34x=-30
Add 34x to both sides.
-3x^{2}-125+34x+30=0
Add 30 to both sides.
-3x^{2}-95+34x=0
Add -125 and 30 to get -95.
-3x^{2}+34x-95=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=34 ab=-3\left(-95\right)=285
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-95. To find a and b, set up a system to be solved.
1,285 3,95 5,57 15,19
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 285.
1+285=286 3+95=98 5+57=62 15+19=34
Calculate the sum for each pair.
a=19 b=15
The solution is the pair that gives sum 34.
\left(-3x^{2}+19x\right)+\left(15x-95\right)
Rewrite -3x^{2}+34x-95 as \left(-3x^{2}+19x\right)+\left(15x-95\right).
-x\left(3x-19\right)+5\left(3x-19\right)
Factor out -x in the first and 5 in the second group.
\left(3x-19\right)\left(-x+5\right)
Factor out common term 3x-19 by using distributive property.
x=\frac{19}{3} x=5
To find equation solutions, solve 3x-19=0 and -x+5=0.
5x^{2}-125=8x^{2}-34x-30
Use the distributive property to multiply 4x+3 by 2x-10 and combine like terms.
5x^{2}-125-8x^{2}=-34x-30
Subtract 8x^{2} from both sides.
-3x^{2}-125=-34x-30
Combine 5x^{2} and -8x^{2} to get -3x^{2}.
-3x^{2}-125+34x=-30
Add 34x to both sides.
-3x^{2}-125+34x+30=0
Add 30 to both sides.
-3x^{2}-95+34x=0
Add -125 and 30 to get -95.
-3x^{2}+34x-95=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{34^{2}-4\left(-3\right)\left(-95\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 34 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-3\right)\left(-95\right)}}{2\left(-3\right)}
Square 34.
x=\frac{-34±\sqrt{1156+12\left(-95\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-34±\sqrt{1156-1140}}{2\left(-3\right)}
Multiply 12 times -95.
x=\frac{-34±\sqrt{16}}{2\left(-3\right)}
Add 1156 to -1140.
x=\frac{-34±4}{2\left(-3\right)}
Take the square root of 16.
x=\frac{-34±4}{-6}
Multiply 2 times -3.
x=-\frac{30}{-6}
Now solve the equation x=\frac{-34±4}{-6} when ± is plus. Add -34 to 4.
x=5
Divide -30 by -6.
x=-\frac{38}{-6}
Now solve the equation x=\frac{-34±4}{-6} when ± is minus. Subtract 4 from -34.
x=\frac{19}{3}
Reduce the fraction \frac{-38}{-6} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{19}{3}
The equation is now solved.
5x^{2}-125=8x^{2}-34x-30
Use the distributive property to multiply 4x+3 by 2x-10 and combine like terms.
5x^{2}-125-8x^{2}=-34x-30
Subtract 8x^{2} from both sides.
-3x^{2}-125=-34x-30
Combine 5x^{2} and -8x^{2} to get -3x^{2}.
-3x^{2}-125+34x=-30
Add 34x to both sides.
-3x^{2}+34x=-30+125
Add 125 to both sides.
-3x^{2}+34x=95
Add -30 and 125 to get 95.
\frac{-3x^{2}+34x}{-3}=\frac{95}{-3}
Divide both sides by -3.
x^{2}+\frac{34}{-3}x=\frac{95}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{34}{3}x=\frac{95}{-3}
Divide 34 by -3.
x^{2}-\frac{34}{3}x=-\frac{95}{3}
Divide 95 by -3.
x^{2}-\frac{34}{3}x+\left(-\frac{17}{3}\right)^{2}=-\frac{95}{3}+\left(-\frac{17}{3}\right)^{2}
Divide -\frac{34}{3}, the coefficient of the x term, by 2 to get -\frac{17}{3}. Then add the square of -\frac{17}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{3}x+\frac{289}{9}=-\frac{95}{3}+\frac{289}{9}
Square -\frac{17}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{3}x+\frac{289}{9}=\frac{4}{9}
Add -\frac{95}{3} to \frac{289}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{34}{3}x+\frac{289}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{17}{3}=\frac{2}{3} x-\frac{17}{3}=-\frac{2}{3}
Simplify.
x=\frac{19}{3} x=5
Add \frac{17}{3} to both sides of the equation.