Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-20x+7-14x^{2}
Combine -11x and -9x to get -20x.
-9x^{2}-20x+7
Combine 5x^{2} and -14x^{2} to get -9x^{2}.
factor(5x^{2}-20x+7-14x^{2})
Combine -11x and -9x to get -20x.
factor(-9x^{2}-20x+7)
Combine 5x^{2} and -14x^{2} to get -9x^{2}.
-9x^{2}-20x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-9\right)\times 7}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-9\right)\times 7}}{2\left(-9\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+36\times 7}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-20\right)±\sqrt{400+252}}{2\left(-9\right)}
Multiply 36 times 7.
x=\frac{-\left(-20\right)±\sqrt{652}}{2\left(-9\right)}
Add 400 to 252.
x=\frac{-\left(-20\right)±2\sqrt{163}}{2\left(-9\right)}
Take the square root of 652.
x=\frac{20±2\sqrt{163}}{2\left(-9\right)}
The opposite of -20 is 20.
x=\frac{20±2\sqrt{163}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{163}+20}{-18}
Now solve the equation x=\frac{20±2\sqrt{163}}{-18} when ± is plus. Add 20 to 2\sqrt{163}.
x=\frac{-\sqrt{163}-10}{9}
Divide 20+2\sqrt{163} by -18.
x=\frac{20-2\sqrt{163}}{-18}
Now solve the equation x=\frac{20±2\sqrt{163}}{-18} when ± is minus. Subtract 2\sqrt{163} from 20.
x=\frac{\sqrt{163}-10}{9}
Divide 20-2\sqrt{163} by -18.
-9x^{2}-20x+7=-9\left(x-\frac{-\sqrt{163}-10}{9}\right)\left(x-\frac{\sqrt{163}-10}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-10-\sqrt{163}}{9} for x_{1} and \frac{-10+\sqrt{163}}{9} for x_{2}.