Solve for x
x=2
x=-2
Graph
Share
Copied to clipboard
5x^{2}-10-10=0
Subtract 10 from both sides.
5x^{2}-20=0
Subtract 10 from -10 to get -20.
x^{2}-4=0
Divide both sides by 5.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
5x^{2}=10+10
Add 10 to both sides.
5x^{2}=20
Add 10 and 10 to get 20.
x^{2}=\frac{20}{5}
Divide both sides by 5.
x^{2}=4
Divide 20 by 5 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
5x^{2}-10-10=0
Subtract 10 from both sides.
5x^{2}-20=0
Subtract 10 from -10 to get -20.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-20\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-20\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-20\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{400}}{2\times 5}
Multiply -20 times -20.
x=\frac{0±20}{2\times 5}
Take the square root of 400.
x=\frac{0±20}{10}
Multiply 2 times 5.
x=2
Now solve the equation x=\frac{0±20}{10} when ± is plus. Divide 20 by 10.
x=-2
Now solve the equation x=\frac{0±20}{10} when ± is minus. Divide -20 by 10.
x=2 x=-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}