Solve for x
x = \frac{\sqrt{161} + 1}{5} \approx 2.737715508
x=\frac{1-\sqrt{161}}{5}\approx -2.337715508
Graph
Share
Copied to clipboard
5x^{2}-2x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\left(-32\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -2 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\left(-32\right)}}{2\times 5}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-20\left(-32\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-2\right)±\sqrt{4+640}}{2\times 5}
Multiply -20 times -32.
x=\frac{-\left(-2\right)±\sqrt{644}}{2\times 5}
Add 4 to 640.
x=\frac{-\left(-2\right)±2\sqrt{161}}{2\times 5}
Take the square root of 644.
x=\frac{2±2\sqrt{161}}{2\times 5}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{161}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{161}+2}{10}
Now solve the equation x=\frac{2±2\sqrt{161}}{10} when ± is plus. Add 2 to 2\sqrt{161}.
x=\frac{\sqrt{161}+1}{5}
Divide 2+2\sqrt{161} by 10.
x=\frac{2-2\sqrt{161}}{10}
Now solve the equation x=\frac{2±2\sqrt{161}}{10} when ± is minus. Subtract 2\sqrt{161} from 2.
x=\frac{1-\sqrt{161}}{5}
Divide 2-2\sqrt{161} by 10.
x=\frac{\sqrt{161}+1}{5} x=\frac{1-\sqrt{161}}{5}
The equation is now solved.
5x^{2}-2x-32=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-2x-32-\left(-32\right)=-\left(-32\right)
Add 32 to both sides of the equation.
5x^{2}-2x=-\left(-32\right)
Subtracting -32 from itself leaves 0.
5x^{2}-2x=32
Subtract -32 from 0.
\frac{5x^{2}-2x}{5}=\frac{32}{5}
Divide both sides by 5.
x^{2}-\frac{2}{5}x=\frac{32}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{32}{5}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{32}{5}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{161}{25}
Add \frac{32}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{161}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{161}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{161}}{5} x-\frac{1}{5}=-\frac{\sqrt{161}}{5}
Simplify.
x=\frac{\sqrt{161}+1}{5} x=\frac{1-\sqrt{161}}{5}
Add \frac{1}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}