Solve for x
x=\frac{4}{5}=0.8
Graph
Share
Copied to clipboard
5x^{2}-8x=-\frac{16}{5}
Subtract 8x from both sides.
5x^{2}-8x+\frac{16}{5}=0
Add \frac{16}{5} to both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times \frac{16}{5}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -8 for b, and \frac{16}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times \frac{16}{5}}}{2\times 5}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-20\times \frac{16}{5}}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 5}
Multiply -20 times \frac{16}{5}.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 5}
Add 64 to -64.
x=-\frac{-8}{2\times 5}
Take the square root of 0.
x=\frac{8}{2\times 5}
The opposite of -8 is 8.
x=\frac{8}{10}
Multiply 2 times 5.
x=\frac{4}{5}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
5x^{2}-8x=-\frac{16}{5}
Subtract 8x from both sides.
\frac{5x^{2}-8x}{5}=-\frac{\frac{16}{5}}{5}
Divide both sides by 5.
x^{2}-\frac{8}{5}x=-\frac{\frac{16}{5}}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{8}{5}x=-\frac{16}{25}
Divide -\frac{16}{5} by 5.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{16}{25}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-16+16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=0
Add -\frac{16}{25} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=0
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{4}{5}=0 x-\frac{4}{5}=0
Simplify.
x=\frac{4}{5} x=\frac{4}{5}
Add \frac{4}{5} to both sides of the equation.
x=\frac{4}{5}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}