Solve for x
x = \frac{8 \sqrt{6}}{3} \approx 6.531972647
x = -\frac{8 \sqrt{6}}{3} \approx -6.531972647
Graph
Share
Copied to clipboard
5x^{2}+x^{2}=256
Add x^{2} to both sides.
6x^{2}=256
Combine 5x^{2} and x^{2} to get 6x^{2}.
x^{2}=\frac{256}{6}
Divide both sides by 6.
x^{2}=\frac{128}{3}
Reduce the fraction \frac{256}{6} to lowest terms by extracting and canceling out 2.
x=\frac{8\sqrt{6}}{3} x=-\frac{8\sqrt{6}}{3}
Take the square root of both sides of the equation.
5x^{2}-256=-x^{2}
Subtract 256 from both sides.
5x^{2}-256+x^{2}=0
Add x^{2} to both sides.
6x^{2}-256=0
Combine 5x^{2} and x^{2} to get 6x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-256\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-256\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-256\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{6144}}{2\times 6}
Multiply -24 times -256.
x=\frac{0±32\sqrt{6}}{2\times 6}
Take the square root of 6144.
x=\frac{0±32\sqrt{6}}{12}
Multiply 2 times 6.
x=\frac{8\sqrt{6}}{3}
Now solve the equation x=\frac{0±32\sqrt{6}}{12} when ± is plus.
x=-\frac{8\sqrt{6}}{3}
Now solve the equation x=\frac{0±32\sqrt{6}}{12} when ± is minus.
x=\frac{8\sqrt{6}}{3} x=-\frac{8\sqrt{6}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}