Solve for x
x=-\frac{1}{5}=-0.2
x=5
Graph
Share
Copied to clipboard
5x^{2}-24x=5
Subtract 24x from both sides.
5x^{2}-24x-5=0
Subtract 5 from both sides.
a+b=-24 ab=5\left(-5\right)=-25
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-25 5,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -25.
1-25=-24 5-5=0
Calculate the sum for each pair.
a=-25 b=1
The solution is the pair that gives sum -24.
\left(5x^{2}-25x\right)+\left(x-5\right)
Rewrite 5x^{2}-24x-5 as \left(5x^{2}-25x\right)+\left(x-5\right).
5x\left(x-5\right)+x-5
Factor out 5x in 5x^{2}-25x.
\left(x-5\right)\left(5x+1\right)
Factor out common term x-5 by using distributive property.
x=5 x=-\frac{1}{5}
To find equation solutions, solve x-5=0 and 5x+1=0.
5x^{2}-24x=5
Subtract 24x from both sides.
5x^{2}-24x-5=0
Subtract 5 from both sides.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -24 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 5\left(-5\right)}}{2\times 5}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-24\right)±\sqrt{576+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-\left(-24\right)±\sqrt{676}}{2\times 5}
Add 576 to 100.
x=\frac{-\left(-24\right)±26}{2\times 5}
Take the square root of 676.
x=\frac{24±26}{2\times 5}
The opposite of -24 is 24.
x=\frac{24±26}{10}
Multiply 2 times 5.
x=\frac{50}{10}
Now solve the equation x=\frac{24±26}{10} when ± is plus. Add 24 to 26.
x=5
Divide 50 by 10.
x=-\frac{2}{10}
Now solve the equation x=\frac{24±26}{10} when ± is minus. Subtract 26 from 24.
x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
x=5 x=-\frac{1}{5}
The equation is now solved.
5x^{2}-24x=5
Subtract 24x from both sides.
\frac{5x^{2}-24x}{5}=\frac{5}{5}
Divide both sides by 5.
x^{2}-\frac{24}{5}x=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{24}{5}x=1
Divide 5 by 5.
x^{2}-\frac{24}{5}x+\left(-\frac{12}{5}\right)^{2}=1+\left(-\frac{12}{5}\right)^{2}
Divide -\frac{24}{5}, the coefficient of the x term, by 2 to get -\frac{12}{5}. Then add the square of -\frac{12}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{5}x+\frac{144}{25}=1+\frac{144}{25}
Square -\frac{12}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{5}x+\frac{144}{25}=\frac{169}{25}
Add 1 to \frac{144}{25}.
\left(x-\frac{12}{5}\right)^{2}=\frac{169}{25}
Factor x^{2}-\frac{24}{5}x+\frac{144}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{5}\right)^{2}}=\sqrt{\frac{169}{25}}
Take the square root of both sides of the equation.
x-\frac{12}{5}=\frac{13}{5} x-\frac{12}{5}=-\frac{13}{5}
Simplify.
x=5 x=-\frac{1}{5}
Add \frac{12}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}