Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+9x=-6
Add 9x to both sides.
5x^{2}+9x+6=0
Add 6 to both sides.
x=\frac{-9±\sqrt{9^{2}-4\times 5\times 6}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 9 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 5\times 6}}{2\times 5}
Square 9.
x=\frac{-9±\sqrt{81-20\times 6}}{2\times 5}
Multiply -4 times 5.
x=\frac{-9±\sqrt{81-120}}{2\times 5}
Multiply -20 times 6.
x=\frac{-9±\sqrt{-39}}{2\times 5}
Add 81 to -120.
x=\frac{-9±\sqrt{39}i}{2\times 5}
Take the square root of -39.
x=\frac{-9±\sqrt{39}i}{10}
Multiply 2 times 5.
x=\frac{-9+\sqrt{39}i}{10}
Now solve the equation x=\frac{-9±\sqrt{39}i}{10} when ± is plus. Add -9 to i\sqrt{39}.
x=\frac{-\sqrt{39}i-9}{10}
Now solve the equation x=\frac{-9±\sqrt{39}i}{10} when ± is minus. Subtract i\sqrt{39} from -9.
x=\frac{-9+\sqrt{39}i}{10} x=\frac{-\sqrt{39}i-9}{10}
The equation is now solved.
5x^{2}+9x=-6
Add 9x to both sides.
\frac{5x^{2}+9x}{5}=-\frac{6}{5}
Divide both sides by 5.
x^{2}+\frac{9}{5}x=-\frac{6}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{9}{5}x+\left(\frac{9}{10}\right)^{2}=-\frac{6}{5}+\left(\frac{9}{10}\right)^{2}
Divide \frac{9}{5}, the coefficient of the x term, by 2 to get \frac{9}{10}. Then add the square of \frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{5}x+\frac{81}{100}=-\frac{6}{5}+\frac{81}{100}
Square \frac{9}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{5}x+\frac{81}{100}=-\frac{39}{100}
Add -\frac{6}{5} to \frac{81}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{10}\right)^{2}=-\frac{39}{100}
Factor x^{2}+\frac{9}{5}x+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{10}\right)^{2}}=\sqrt{-\frac{39}{100}}
Take the square root of both sides of the equation.
x+\frac{9}{10}=\frac{\sqrt{39}i}{10} x+\frac{9}{10}=-\frac{\sqrt{39}i}{10}
Simplify.
x=\frac{-9+\sqrt{39}i}{10} x=\frac{-\sqrt{39}i-9}{10}
Subtract \frac{9}{10} from both sides of the equation.