Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+4x+3=21
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+4x+3-21=21-21
Subtract 21 from both sides of the equation.
5x^{2}+4x+3-21=0
Subtracting 21 from itself leaves 0.
5x^{2}+4x-18=0
Subtract 21 from 3.
x=\frac{-4±\sqrt{4^{2}-4\times 5\left(-18\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 4 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 5\left(-18\right)}}{2\times 5}
Square 4.
x=\frac{-4±\sqrt{16-20\left(-18\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-4±\sqrt{16+360}}{2\times 5}
Multiply -20 times -18.
x=\frac{-4±\sqrt{376}}{2\times 5}
Add 16 to 360.
x=\frac{-4±2\sqrt{94}}{2\times 5}
Take the square root of 376.
x=\frac{-4±2\sqrt{94}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{94}-4}{10}
Now solve the equation x=\frac{-4±2\sqrt{94}}{10} when ± is plus. Add -4 to 2\sqrt{94}.
x=\frac{\sqrt{94}-2}{5}
Divide -4+2\sqrt{94} by 10.
x=\frac{-2\sqrt{94}-4}{10}
Now solve the equation x=\frac{-4±2\sqrt{94}}{10} when ± is minus. Subtract 2\sqrt{94} from -4.
x=\frac{-\sqrt{94}-2}{5}
Divide -4-2\sqrt{94} by 10.
x=\frac{\sqrt{94}-2}{5} x=\frac{-\sqrt{94}-2}{5}
The equation is now solved.
5x^{2}+4x+3=21
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+4x+3-3=21-3
Subtract 3 from both sides of the equation.
5x^{2}+4x=21-3
Subtracting 3 from itself leaves 0.
5x^{2}+4x=18
Subtract 3 from 21.
\frac{5x^{2}+4x}{5}=\frac{18}{5}
Divide both sides by 5.
x^{2}+\frac{4}{5}x=\frac{18}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\frac{18}{5}+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{18}{5}+\frac{4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{94}{25}
Add \frac{18}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{5}\right)^{2}=\frac{94}{25}
Factor x^{2}+\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{94}{25}}
Take the square root of both sides of the equation.
x+\frac{2}{5}=\frac{\sqrt{94}}{5} x+\frac{2}{5}=-\frac{\sqrt{94}}{5}
Simplify.
x=\frac{\sqrt{94}-2}{5} x=\frac{-\sqrt{94}-2}{5}
Subtract \frac{2}{5} from both sides of the equation.