Solve for y
y=5x^{2}+30x+41
Solve for x (complex solution)
x=\frac{\sqrt{5y+20}}{5}-3
x=-\frac{\sqrt{5y+20}}{5}-3
Solve for x
x=\frac{\sqrt{5y+20}}{5}-3
x=-\frac{\sqrt{5y+20}}{5}-3\text{, }y\geq -4
Graph
Share
Copied to clipboard
30x-y+41=-5x^{2}
Subtract 5x^{2} from both sides. Anything subtracted from zero gives its negation.
-y+41=-5x^{2}-30x
Subtract 30x from both sides.
-y=-5x^{2}-30x-41
Subtract 41 from both sides.
\frac{-y}{-1}=\frac{-5x^{2}-30x-41}{-1}
Divide both sides by -1.
y=\frac{-5x^{2}-30x-41}{-1}
Dividing by -1 undoes the multiplication by -1.
y=5x^{2}+30x+41
Divide -5x^{2}-30x-41 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}