Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+3x+4-4x^{2}=-2x-5
Subtract 4x^{2} from both sides.
x^{2}+3x+4=-2x-5
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}+3x+4+2x=-5
Add 2x to both sides.
x^{2}+5x+4=-5
Combine 3x and 2x to get 5x.
x^{2}+5x+4+5=0
Add 5 to both sides.
x^{2}+5x+9=0
Add 4 and 5 to get 9.
x=\frac{-5±\sqrt{5^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 9}}{2}
Square 5.
x=\frac{-5±\sqrt{25-36}}{2}
Multiply -4 times 9.
x=\frac{-5±\sqrt{-11}}{2}
Add 25 to -36.
x=\frac{-5±\sqrt{11}i}{2}
Take the square root of -11.
x=\frac{-5+\sqrt{11}i}{2}
Now solve the equation x=\frac{-5±\sqrt{11}i}{2} when ± is plus. Add -5 to i\sqrt{11}.
x=\frac{-\sqrt{11}i-5}{2}
Now solve the equation x=\frac{-5±\sqrt{11}i}{2} when ± is minus. Subtract i\sqrt{11} from -5.
x=\frac{-5+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i-5}{2}
The equation is now solved.
5x^{2}+3x+4-4x^{2}=-2x-5
Subtract 4x^{2} from both sides.
x^{2}+3x+4=-2x-5
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}+3x+4+2x=-5
Add 2x to both sides.
x^{2}+5x+4=-5
Combine 3x and 2x to get 5x.
x^{2}+5x=-5-4
Subtract 4 from both sides.
x^{2}+5x=-9
Subtract 4 from -5 to get -9.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-9+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-9+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{11}{4}
Add -9 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{11}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{11}i}{2} x+\frac{5}{2}=-\frac{\sqrt{11}i}{2}
Simplify.
x=\frac{-5+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i-5}{2}
Subtract \frac{5}{2} from both sides of the equation.