Solve for x
x=-9
x=4
Graph
Share
Copied to clipboard
5x^{2}+25x-180=0
Subtract 180 from both sides.
x^{2}+5x-36=0
Divide both sides by 5.
a+b=5 ab=1\left(-36\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-4 b=9
The solution is the pair that gives sum 5.
\left(x^{2}-4x\right)+\left(9x-36\right)
Rewrite x^{2}+5x-36 as \left(x^{2}-4x\right)+\left(9x-36\right).
x\left(x-4\right)+9\left(x-4\right)
Factor out x in the first and 9 in the second group.
\left(x-4\right)\left(x+9\right)
Factor out common term x-4 by using distributive property.
x=4 x=-9
To find equation solutions, solve x-4=0 and x+9=0.
5x^{2}+25x=180
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+25x-180=180-180
Subtract 180 from both sides of the equation.
5x^{2}+25x-180=0
Subtracting 180 from itself leaves 0.
x=\frac{-25±\sqrt{25^{2}-4\times 5\left(-180\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 25 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 5\left(-180\right)}}{2\times 5}
Square 25.
x=\frac{-25±\sqrt{625-20\left(-180\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-25±\sqrt{625+3600}}{2\times 5}
Multiply -20 times -180.
x=\frac{-25±\sqrt{4225}}{2\times 5}
Add 625 to 3600.
x=\frac{-25±65}{2\times 5}
Take the square root of 4225.
x=\frac{-25±65}{10}
Multiply 2 times 5.
x=\frac{40}{10}
Now solve the equation x=\frac{-25±65}{10} when ± is plus. Add -25 to 65.
x=4
Divide 40 by 10.
x=-\frac{90}{10}
Now solve the equation x=\frac{-25±65}{10} when ± is minus. Subtract 65 from -25.
x=-9
Divide -90 by 10.
x=4 x=-9
The equation is now solved.
5x^{2}+25x=180
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+25x}{5}=\frac{180}{5}
Divide both sides by 5.
x^{2}+\frac{25}{5}x=\frac{180}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+5x=\frac{180}{5}
Divide 25 by 5.
x^{2}+5x=36
Divide 180 by 5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
Add 36 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
Simplify.
x=4 x=-9
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}