Solve for x
x = \frac{2 \sqrt{14} - 1}{5} \approx 1.296662955
x=\frac{-2\sqrt{14}-1}{5}\approx -1.696662955
Graph
Share
Copied to clipboard
5x^{2}+2x=11
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+2x-11=11-11
Subtract 11 from both sides of the equation.
5x^{2}+2x-11=0
Subtracting 11 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-11\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 2 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 5\left(-11\right)}}{2\times 5}
Square 2.
x=\frac{-2±\sqrt{4-20\left(-11\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-2±\sqrt{4+220}}{2\times 5}
Multiply -20 times -11.
x=\frac{-2±\sqrt{224}}{2\times 5}
Add 4 to 220.
x=\frac{-2±4\sqrt{14}}{2\times 5}
Take the square root of 224.
x=\frac{-2±4\sqrt{14}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{14}-2}{10}
Now solve the equation x=\frac{-2±4\sqrt{14}}{10} when ± is plus. Add -2 to 4\sqrt{14}.
x=\frac{2\sqrt{14}-1}{5}
Divide -2+4\sqrt{14} by 10.
x=\frac{-4\sqrt{14}-2}{10}
Now solve the equation x=\frac{-2±4\sqrt{14}}{10} when ± is minus. Subtract 4\sqrt{14} from -2.
x=\frac{-2\sqrt{14}-1}{5}
Divide -2-4\sqrt{14} by 10.
x=\frac{2\sqrt{14}-1}{5} x=\frac{-2\sqrt{14}-1}{5}
The equation is now solved.
5x^{2}+2x=11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+2x}{5}=\frac{11}{5}
Divide both sides by 5.
x^{2}+\frac{2}{5}x=\frac{11}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{11}{5}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{11}{5}+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{56}{25}
Add \frac{11}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=\frac{56}{25}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{56}{25}}
Take the square root of both sides of the equation.
x+\frac{1}{5}=\frac{2\sqrt{14}}{5} x+\frac{1}{5}=-\frac{2\sqrt{14}}{5}
Simplify.
x=\frac{2\sqrt{14}-1}{5} x=\frac{-2\sqrt{14}-1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}