Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+3=0
Add 2 and 1 to get 3.
5x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{3}{5}
Divide both sides by 5.
x=\frac{\sqrt{15}i}{5} x=-\frac{\sqrt{15}i}{5}
The equation is now solved.
5x^{2}+3=0
Add 2 and 1 to get 3.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\times 3}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\times 3}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{-60}}{2\times 5}
Multiply -20 times 3.
x=\frac{0±2\sqrt{15}i}{2\times 5}
Take the square root of -60.
x=\frac{0±2\sqrt{15}i}{10}
Multiply 2 times 5.
x=\frac{\sqrt{15}i}{5}
Now solve the equation x=\frac{0±2\sqrt{15}i}{10} when ± is plus.
x=-\frac{\sqrt{15}i}{5}
Now solve the equation x=\frac{0±2\sqrt{15}i}{10} when ± is minus.
x=\frac{\sqrt{15}i}{5} x=-\frac{\sqrt{15}i}{5}
The equation is now solved.