Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+3-x\right)
Factor out 5. Polynomial x^{2}+3-x is not factored since it does not have any rational roots.
5x^{2}-5x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\times 15}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\times 15}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\times 15}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{25-300}}{2\times 5}
Multiply -20 times 15.
x=\frac{-\left(-5\right)±\sqrt{-275}}{2\times 5}
Add 25 to -300.
5x^{2}-5x+15
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.