Solve for x
x=\frac{\sqrt{145}}{100}-0.05\approx 0.070415946
x=-\frac{\sqrt{145}}{100}-0.05\approx -0.170415946
Graph
Share
Copied to clipboard
5x^{2}+\frac{1}{2}x=0.06
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+\frac{1}{2}x-0.06=0.06-0.06
Subtract 0.06 from both sides of the equation.
5x^{2}+\frac{1}{2}x-0.06=0
Subtracting 0.06 from itself leaves 0.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times 5\left(-0.06\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, \frac{1}{2} for b, and -0.06 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times 5\left(-0.06\right)}}{2\times 5}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-20\left(-0.06\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+1.2}}{2\times 5}
Multiply -20 times -0.06.
x=\frac{-\frac{1}{2}±\sqrt{\frac{29}{20}}}{2\times 5}
Add \frac{1}{4} to 1.2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\frac{\sqrt{145}}{10}}{2\times 5}
Take the square root of \frac{29}{20}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{145}}{10}}{10}
Multiply 2 times 5.
x=\frac{\frac{\sqrt{145}}{10}-\frac{1}{2}}{10}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{145}}{10}}{10} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{145}}{10}.
x=\frac{\sqrt{145}}{100}-\frac{1}{20}
Divide -\frac{1}{2}+\frac{\sqrt{145}}{10} by 10.
x=\frac{-\frac{\sqrt{145}}{10}-\frac{1}{2}}{10}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{145}}{10}}{10} when ± is minus. Subtract \frac{\sqrt{145}}{10} from -\frac{1}{2}.
x=-\frac{\sqrt{145}}{100}-\frac{1}{20}
Divide -\frac{1}{2}-\frac{\sqrt{145}}{10} by 10.
x=\frac{\sqrt{145}}{100}-\frac{1}{20} x=-\frac{\sqrt{145}}{100}-\frac{1}{20}
The equation is now solved.
5x^{2}+\frac{1}{2}x=0.06
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+\frac{1}{2}x}{5}=\frac{0.06}{5}
Divide both sides by 5.
x^{2}+\frac{\frac{1}{2}}{5}x=\frac{0.06}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{1}{10}x=\frac{0.06}{5}
Divide \frac{1}{2} by 5.
x^{2}+\frac{1}{10}x=0.012
Divide 0.06 by 5.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=0.012+\left(\frac{1}{20}\right)^{2}
Divide \frac{1}{10}, the coefficient of the x term, by 2 to get \frac{1}{20}. Then add the square of \frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10}x+\frac{1}{400}=0.012+\frac{1}{400}
Square \frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{29}{2000}
Add 0.012 to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{20}\right)^{2}=\frac{29}{2000}
Factor x^{2}+\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{29}{2000}}
Take the square root of both sides of the equation.
x+\frac{1}{20}=\frac{\sqrt{145}}{100} x+\frac{1}{20}=-\frac{\sqrt{145}}{100}
Simplify.
x=\frac{\sqrt{145}}{100}-\frac{1}{20} x=-\frac{\sqrt{145}}{100}-\frac{1}{20}
Subtract \frac{1}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}