Solve for x
\left\{\begin{matrix}\\x=\frac{4t}{5}-\frac{20}{7}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
Solve for t
t=\frac{5x}{4}+\frac{25}{7}
t=0
Graph
Share
Copied to clipboard
5x=\frac{28}{25}t^{2}-\frac{7}{5}tx-4t+5x
Use the distributive property to multiply \frac{7}{5}t-5 by \frac{4}{5}t-x.
5x+\frac{7}{5}tx=\frac{28}{25}t^{2}-4t+5x
Add \frac{7}{5}tx to both sides.
5x+\frac{7}{5}tx-5x=\frac{28}{25}t^{2}-4t
Subtract 5x from both sides.
\frac{7}{5}tx=\frac{28}{25}t^{2}-4t
Combine 5x and -5x to get 0.
\frac{7t}{5}x=\frac{28t^{2}}{25}-4t
The equation is in standard form.
\frac{5\times \frac{7t}{5}x}{7t}=\frac{5\left(\frac{28t^{2}}{25}-4t\right)}{7t}
Divide both sides by \frac{7}{5}t.
x=\frac{5\left(\frac{28t^{2}}{25}-4t\right)}{7t}
Dividing by \frac{7}{5}t undoes the multiplication by \frac{7}{5}t.
x=\frac{4t}{5}-\frac{20}{7}
Divide -4t+\frac{28t^{2}}{25} by \frac{7}{5}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}