Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+2\times 5x^{2}-108=0
Calculate 2 to the power of 1 and get 2.
5x+10x^{2}-108=0
Multiply 2 and 5 to get 10.
10x^{2}+5x-108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 10\left(-108\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 5 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 10\left(-108\right)}}{2\times 10}
Square 5.
x=\frac{-5±\sqrt{25-40\left(-108\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-5±\sqrt{25+4320}}{2\times 10}
Multiply -40 times -108.
x=\frac{-5±\sqrt{4345}}{2\times 10}
Add 25 to 4320.
x=\frac{-5±\sqrt{4345}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{4345}-5}{20}
Now solve the equation x=\frac{-5±\sqrt{4345}}{20} when ± is plus. Add -5 to \sqrt{4345}.
x=\frac{\sqrt{4345}}{20}-\frac{1}{4}
Divide -5+\sqrt{4345} by 20.
x=\frac{-\sqrt{4345}-5}{20}
Now solve the equation x=\frac{-5±\sqrt{4345}}{20} when ± is minus. Subtract \sqrt{4345} from -5.
x=-\frac{\sqrt{4345}}{20}-\frac{1}{4}
Divide -5-\sqrt{4345} by 20.
x=\frac{\sqrt{4345}}{20}-\frac{1}{4} x=-\frac{\sqrt{4345}}{20}-\frac{1}{4}
The equation is now solved.
5x+2\times 5x^{2}-108=0
Calculate 2 to the power of 1 and get 2.
5x+10x^{2}-108=0
Multiply 2 and 5 to get 10.
5x+10x^{2}=108
Add 108 to both sides. Anything plus zero gives itself.
10x^{2}+5x=108
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}+5x}{10}=\frac{108}{10}
Divide both sides by 10.
x^{2}+\frac{5}{10}x=\frac{108}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{1}{2}x=\frac{108}{10}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{1}{2}x=\frac{54}{5}
Reduce the fraction \frac{108}{10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{54}{5}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{54}{5}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{869}{80}
Add \frac{54}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{869}{80}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{869}{80}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{4345}}{20} x+\frac{1}{4}=-\frac{\sqrt{4345}}{20}
Simplify.
x=\frac{\sqrt{4345}}{20}-\frac{1}{4} x=-\frac{\sqrt{4345}}{20}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.