Solve for x
x\geq \frac{38}{9}
Graph
Share
Copied to clipboard
25x+3x-2-74\geq 10x
Multiply both sides of the equation by 5. Since 5 is positive, the inequality direction remains the same.
28x-2-74\geq 10x
Combine 25x and 3x to get 28x.
28x-76\geq 10x
Subtract 74 from -2 to get -76.
28x-76-10x\geq 0
Subtract 10x from both sides.
18x-76\geq 0
Combine 28x and -10x to get 18x.
18x\geq 76
Add 76 to both sides. Anything plus zero gives itself.
x\geq \frac{76}{18}
Divide both sides by 18. Since 18 is positive, the inequality direction remains the same.
x\geq \frac{38}{9}
Reduce the fraction \frac{76}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}