Solve for x
x=-\frac{3y}{10}+\frac{12}{25}
Solve for y
y=-\frac{10x}{3}+\frac{8}{5}
Graph
Share
Copied to clipboard
5x=\frac{12}{5}-\frac{3}{2}y
Subtract \frac{3}{2}y from both sides.
5x=-\frac{3y}{2}+\frac{12}{5}
The equation is in standard form.
\frac{5x}{5}=\frac{-\frac{3y}{2}+\frac{12}{5}}{5}
Divide both sides by 5.
x=\frac{-\frac{3y}{2}+\frac{12}{5}}{5}
Dividing by 5 undoes the multiplication by 5.
x=-\frac{3y}{10}+\frac{12}{25}
Divide \frac{12}{5}-\frac{3y}{2} by 5.
\frac{3}{2}y=\frac{12}{5}-5x
Subtract 5x from both sides.
\frac{\frac{3}{2}y}{\frac{3}{2}}=\frac{\frac{12}{5}-5x}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{12}{5}-5x}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
y=-\frac{10x}{3}+\frac{8}{5}
Divide \frac{12}{5}-5x by \frac{3}{2} by multiplying \frac{12}{5}-5x by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}