Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

5w^{2}=405
Multiply w and w to get w^{2}.
w^{2}=\frac{405}{5}
Divide both sides by 5.
w^{2}=81
Divide 405 by 5 to get 81.
w=9 w=-9
Take the square root of both sides of the equation.
5w^{2}=405
Multiply w and w to get w^{2}.
5w^{2}-405=0
Subtract 405 from both sides.
w=\frac{0±\sqrt{0^{2}-4\times 5\left(-405\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 5\left(-405\right)}}{2\times 5}
Square 0.
w=\frac{0±\sqrt{-20\left(-405\right)}}{2\times 5}
Multiply -4 times 5.
w=\frac{0±\sqrt{8100}}{2\times 5}
Multiply -20 times -405.
w=\frac{0±90}{2\times 5}
Take the square root of 8100.
w=\frac{0±90}{10}
Multiply 2 times 5.
w=9
Now solve the equation w=\frac{0±90}{10} when ± is plus. Divide 90 by 10.
w=-9
Now solve the equation w=\frac{0±90}{10} when ± is minus. Divide -90 by 10.
w=9 w=-9
The equation is now solved.