Solve for w
w=9
w=-9
Share
Copied to clipboard
5w^{2}=405
Multiply w and w to get w^{2}.
w^{2}=\frac{405}{5}
Divide both sides by 5.
w^{2}=81
Divide 405 by 5 to get 81.
w=9 w=-9
Take the square root of both sides of the equation.
5w^{2}=405
Multiply w and w to get w^{2}.
5w^{2}-405=0
Subtract 405 from both sides.
w=\frac{0±\sqrt{0^{2}-4\times 5\left(-405\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 5\left(-405\right)}}{2\times 5}
Square 0.
w=\frac{0±\sqrt{-20\left(-405\right)}}{2\times 5}
Multiply -4 times 5.
w=\frac{0±\sqrt{8100}}{2\times 5}
Multiply -20 times -405.
w=\frac{0±90}{2\times 5}
Take the square root of 8100.
w=\frac{0±90}{10}
Multiply 2 times 5.
w=9
Now solve the equation w=\frac{0±90}{10} when ± is plus. Divide 90 by 10.
w=-9
Now solve the equation w=\frac{0±90}{10} when ± is minus. Divide -90 by 10.
w=9 w=-9
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}