Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

w^{2}+5w-50
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=1\left(-50\right)=-50
Factor the expression by grouping. First, the expression needs to be rewritten as w^{2}+aw+bw-50. To find a and b, set up a system to be solved.
-1,50 -2,25 -5,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -50.
-1+50=49 -2+25=23 -5+10=5
Calculate the sum for each pair.
a=-5 b=10
The solution is the pair that gives sum 5.
\left(w^{2}-5w\right)+\left(10w-50\right)
Rewrite w^{2}+5w-50 as \left(w^{2}-5w\right)+\left(10w-50\right).
w\left(w-5\right)+10\left(w-5\right)
Factor out w in the first and 10 in the second group.
\left(w-5\right)\left(w+10\right)
Factor out common term w-5 by using distributive property.
w^{2}+5w-50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-5±\sqrt{5^{2}-4\left(-50\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-5±\sqrt{25-4\left(-50\right)}}{2}
Square 5.
w=\frac{-5±\sqrt{25+200}}{2}
Multiply -4 times -50.
w=\frac{-5±\sqrt{225}}{2}
Add 25 to 200.
w=\frac{-5±15}{2}
Take the square root of 225.
w=\frac{10}{2}
Now solve the equation w=\frac{-5±15}{2} when ± is plus. Add -5 to 15.
w=5
Divide 10 by 2.
w=-\frac{20}{2}
Now solve the equation w=\frac{-5±15}{2} when ± is minus. Subtract 15 from -5.
w=-10
Divide -20 by 2.
w^{2}+5w-50=\left(w-5\right)\left(w-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -10 for x_{2}.
w^{2}+5w-50=\left(w-5\right)\left(w+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.