Solve for d
d=\frac{4h-5tv}{3}
t\neq 0
Solve for h
h=\frac{5tv+3d}{4}
t\neq 0
Share
Copied to clipboard
5vt=4h-3d
Multiply both sides of the equation by t.
4h-3d=5vt
Swap sides so that all variable terms are on the left hand side.
-3d=5vt-4h
Subtract 4h from both sides.
-3d=5tv-4h
The equation is in standard form.
\frac{-3d}{-3}=\frac{5tv-4h}{-3}
Divide both sides by -3.
d=\frac{5tv-4h}{-3}
Dividing by -3 undoes the multiplication by -3.
d=\frac{4h-5tv}{3}
Divide 5vt-4h by -3.
5vt=4h-3d
Multiply both sides of the equation by t.
4h-3d=5vt
Swap sides so that all variable terms are on the left hand side.
4h=5vt+3d
Add 3d to both sides.
4h=5tv+3d
The equation is in standard form.
\frac{4h}{4}=\frac{5tv+3d}{4}
Divide both sides by 4.
h=\frac{5tv+3d}{4}
Dividing by 4 undoes the multiplication by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}