Solve for u
u\leq -8
Share
Copied to clipboard
5u-36\geq -12+8u
Use the distributive property to multiply -2 by 6-4u.
5u-36-8u\geq -12
Subtract 8u from both sides.
-3u-36\geq -12
Combine 5u and -8u to get -3u.
-3u\geq -12+36
Add 36 to both sides.
-3u\geq 24
Add -12 and 36 to get 24.
u\leq \frac{24}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
u\leq -8
Divide 24 by -3 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}