Solve for u
u=-\frac{1}{5}=-0.2
u=3
Share
Copied to clipboard
5u^{2}-14u-3=0
Subtract 3 from both sides.
a+b=-14 ab=5\left(-3\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5u^{2}+au+bu-3. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-15 b=1
The solution is the pair that gives sum -14.
\left(5u^{2}-15u\right)+\left(u-3\right)
Rewrite 5u^{2}-14u-3 as \left(5u^{2}-15u\right)+\left(u-3\right).
5u\left(u-3\right)+u-3
Factor out 5u in 5u^{2}-15u.
\left(u-3\right)\left(5u+1\right)
Factor out common term u-3 by using distributive property.
u=3 u=-\frac{1}{5}
To find equation solutions, solve u-3=0 and 5u+1=0.
5u^{2}-14u=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5u^{2}-14u-3=3-3
Subtract 3 from both sides of the equation.
5u^{2}-14u-3=0
Subtracting 3 from itself leaves 0.
u=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -14 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-3\right)}}{2\times 5}
Square -14.
u=\frac{-\left(-14\right)±\sqrt{196-20\left(-3\right)}}{2\times 5}
Multiply -4 times 5.
u=\frac{-\left(-14\right)±\sqrt{196+60}}{2\times 5}
Multiply -20 times -3.
u=\frac{-\left(-14\right)±\sqrt{256}}{2\times 5}
Add 196 to 60.
u=\frac{-\left(-14\right)±16}{2\times 5}
Take the square root of 256.
u=\frac{14±16}{2\times 5}
The opposite of -14 is 14.
u=\frac{14±16}{10}
Multiply 2 times 5.
u=\frac{30}{10}
Now solve the equation u=\frac{14±16}{10} when ± is plus. Add 14 to 16.
u=3
Divide 30 by 10.
u=-\frac{2}{10}
Now solve the equation u=\frac{14±16}{10} when ± is minus. Subtract 16 from 14.
u=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
u=3 u=-\frac{1}{5}
The equation is now solved.
5u^{2}-14u=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5u^{2}-14u}{5}=\frac{3}{5}
Divide both sides by 5.
u^{2}-\frac{14}{5}u=\frac{3}{5}
Dividing by 5 undoes the multiplication by 5.
u^{2}-\frac{14}{5}u+\left(-\frac{7}{5}\right)^{2}=\frac{3}{5}+\left(-\frac{7}{5}\right)^{2}
Divide -\frac{14}{5}, the coefficient of the x term, by 2 to get -\frac{7}{5}. Then add the square of -\frac{7}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-\frac{14}{5}u+\frac{49}{25}=\frac{3}{5}+\frac{49}{25}
Square -\frac{7}{5} by squaring both the numerator and the denominator of the fraction.
u^{2}-\frac{14}{5}u+\frac{49}{25}=\frac{64}{25}
Add \frac{3}{5} to \frac{49}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(u-\frac{7}{5}\right)^{2}=\frac{64}{25}
Factor u^{2}-\frac{14}{5}u+\frac{49}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{7}{5}\right)^{2}}=\sqrt{\frac{64}{25}}
Take the square root of both sides of the equation.
u-\frac{7}{5}=\frac{8}{5} u-\frac{7}{5}=-\frac{8}{5}
Simplify.
u=3 u=-\frac{1}{5}
Add \frac{7}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}