Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(u^{2}+2u\right)
Factor out 5.
u\left(u+2\right)
Consider u^{2}+2u. Factor out u.
5u\left(u+2\right)
Rewrite the complete factored expression.
5u^{2}+10u=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-10±\sqrt{10^{2}}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-10±10}{2\times 5}
Take the square root of 10^{2}.
u=\frac{-10±10}{10}
Multiply 2 times 5.
u=\frac{0}{10}
Now solve the equation u=\frac{-10±10}{10} when ± is plus. Add -10 to 10.
u=0
Divide 0 by 10.
u=-\frac{20}{10}
Now solve the equation u=\frac{-10±10}{10} when ± is minus. Subtract 10 from -10.
u=-2
Divide -20 by 10.
5u^{2}+10u=5u\left(u-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -2 for x_{2}.
5u^{2}+10u=5u\left(u+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.