Solve for t
t = \frac{\sqrt{145} - 5}{2} \approx 3.520797289
t=\frac{-\sqrt{145}-5}{2}\approx -8.520797289
Share
Copied to clipboard
25t-75=75-5tt
Multiply both sides of the equation by 5.
25t-75=75-5t^{2}
Multiply t and t to get t^{2}.
25t-75-75=-5t^{2}
Subtract 75 from both sides.
25t-150=-5t^{2}
Subtract 75 from -75 to get -150.
25t-150+5t^{2}=0
Add 5t^{2} to both sides.
5t^{2}+25t-150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-25±\sqrt{25^{2}-4\times 5\left(-150\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 25 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-25±\sqrt{625-4\times 5\left(-150\right)}}{2\times 5}
Square 25.
t=\frac{-25±\sqrt{625-20\left(-150\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-25±\sqrt{625+3000}}{2\times 5}
Multiply -20 times -150.
t=\frac{-25±\sqrt{3625}}{2\times 5}
Add 625 to 3000.
t=\frac{-25±5\sqrt{145}}{2\times 5}
Take the square root of 3625.
t=\frac{-25±5\sqrt{145}}{10}
Multiply 2 times 5.
t=\frac{5\sqrt{145}-25}{10}
Now solve the equation t=\frac{-25±5\sqrt{145}}{10} when ± is plus. Add -25 to 5\sqrt{145}.
t=\frac{\sqrt{145}-5}{2}
Divide -25+5\sqrt{145} by 10.
t=\frac{-5\sqrt{145}-25}{10}
Now solve the equation t=\frac{-25±5\sqrt{145}}{10} when ± is minus. Subtract 5\sqrt{145} from -25.
t=\frac{-\sqrt{145}-5}{2}
Divide -25-5\sqrt{145} by 10.
t=\frac{\sqrt{145}-5}{2} t=\frac{-\sqrt{145}-5}{2}
The equation is now solved.
25t-75=75-5tt
Multiply both sides of the equation by 5.
25t-75=75-5t^{2}
Multiply t and t to get t^{2}.
25t-75+5t^{2}=75
Add 5t^{2} to both sides.
25t+5t^{2}=75+75
Add 75 to both sides.
25t+5t^{2}=150
Add 75 and 75 to get 150.
5t^{2}+25t=150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+25t}{5}=\frac{150}{5}
Divide both sides by 5.
t^{2}+\frac{25}{5}t=\frac{150}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+5t=\frac{150}{5}
Divide 25 by 5.
t^{2}+5t=30
Divide 150 by 5.
t^{2}+5t+\left(\frac{5}{2}\right)^{2}=30+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+5t+\frac{25}{4}=30+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+5t+\frac{25}{4}=\frac{145}{4}
Add 30 to \frac{25}{4}.
\left(t+\frac{5}{2}\right)^{2}=\frac{145}{4}
Factor t^{2}+5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
t+\frac{5}{2}=\frac{\sqrt{145}}{2} t+\frac{5}{2}=-\frac{\sqrt{145}}{2}
Simplify.
t=\frac{\sqrt{145}-5}{2} t=\frac{-\sqrt{145}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}