Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5t^{2}-30t-25=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 5\left(-25\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-30\right)±\sqrt{900-4\times 5\left(-25\right)}}{2\times 5}
Square -30.
t=\frac{-\left(-30\right)±\sqrt{900-20\left(-25\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-30\right)±\sqrt{900+500}}{2\times 5}
Multiply -20 times -25.
t=\frac{-\left(-30\right)±\sqrt{1400}}{2\times 5}
Add 900 to 500.
t=\frac{-\left(-30\right)±10\sqrt{14}}{2\times 5}
Take the square root of 1400.
t=\frac{30±10\sqrt{14}}{2\times 5}
The opposite of -30 is 30.
t=\frac{30±10\sqrt{14}}{10}
Multiply 2 times 5.
t=\frac{10\sqrt{14}+30}{10}
Now solve the equation t=\frac{30±10\sqrt{14}}{10} when ± is plus. Add 30 to 10\sqrt{14}.
t=\sqrt{14}+3
Divide 30+10\sqrt{14} by 10.
t=\frac{30-10\sqrt{14}}{10}
Now solve the equation t=\frac{30±10\sqrt{14}}{10} when ± is minus. Subtract 10\sqrt{14} from 30.
t=3-\sqrt{14}
Divide 30-10\sqrt{14} by 10.
5t^{2}-30t-25=5\left(t-\left(\sqrt{14}+3\right)\right)\left(t-\left(3-\sqrt{14}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3+\sqrt{14} for x_{1} and 3-\sqrt{14} for x_{2}.
x ^ 2 -6x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = 6 rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
9 - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-9 = -14
Simplify the expression by subtracting 9 on both sides
u^2 = 14 u = \pm\sqrt{14} = \pm \sqrt{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - \sqrt{14} = -0.742 s = 3 + \sqrt{14} = 6.742
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.