Solve for t (complex solution)
t=-\frac{\sqrt{5\left(\sqrt{x^{3}+\theta }-4\right)}}{5}
t=\frac{\sqrt{5\left(\sqrt{x^{3}+\theta }-4\right)}}{5}
Solve for x (complex solution)
\left\{\begin{matrix}x=e^{\frac{2\pi i}{3}}\sqrt[3]{25t^{4}+40t^{2}-\theta +16}\text{; }x=\sqrt[3]{25t^{4}+40t^{2}-\theta +16}\text{; }x=e^{\frac{4\pi i}{3}}\sqrt[3]{25t^{4}+40t^{2}-\theta +16}\text{, }&arg(5t^{2}+4)<\pi \\x=-\sqrt[3]{\theta }\text{; }x=e^{\frac{\pi i}{3}}\sqrt[3]{\theta }\text{; }x=e^{\frac{5\pi i}{3}}\sqrt[3]{\theta }\text{, }&t=-\frac{2\sqrt{5}i}{5}\text{ or }t=\frac{2\sqrt{5}i}{5}\end{matrix}\right.
Solve for t
t=\frac{\sqrt{5\left(\sqrt{x^{3}+\theta }-4\right)}}{5}
t=-\frac{\sqrt{5\left(\sqrt{x^{3}+\theta }-4\right)}}{5}\text{, }\theta \geq 16-x^{3}\text{ and }x\geq -\sqrt[3]{\theta }
Solve for x
x=\sqrt[3]{25t^{4}+40t^{2}-\theta +16}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}