Solve for t
t=-3.6
t=1.2
Share
Copied to clipboard
5t^{2}+12t=21.6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5t^{2}+12t-21.6=21.6-21.6
Subtract 21.6 from both sides of the equation.
5t^{2}+12t-21.6=0
Subtracting 21.6 from itself leaves 0.
t=\frac{-12±\sqrt{12^{2}-4\times 5\left(-21.6\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and -21.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-12±\sqrt{144-4\times 5\left(-21.6\right)}}{2\times 5}
Square 12.
t=\frac{-12±\sqrt{144-20\left(-21.6\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-12±\sqrt{144+432}}{2\times 5}
Multiply -20 times -21.6.
t=\frac{-12±\sqrt{576}}{2\times 5}
Add 144 to 432.
t=\frac{-12±24}{2\times 5}
Take the square root of 576.
t=\frac{-12±24}{10}
Multiply 2 times 5.
t=\frac{12}{10}
Now solve the equation t=\frac{-12±24}{10} when ± is plus. Add -12 to 24.
t=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
t=-\frac{36}{10}
Now solve the equation t=\frac{-12±24}{10} when ± is minus. Subtract 24 from -12.
t=-\frac{18}{5}
Reduce the fraction \frac{-36}{10} to lowest terms by extracting and canceling out 2.
t=\frac{6}{5} t=-\frac{18}{5}
The equation is now solved.
5t^{2}+12t=21.6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+12t}{5}=\frac{21.6}{5}
Divide both sides by 5.
t^{2}+\frac{12}{5}t=\frac{21.6}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+\frac{12}{5}t=4.32
Divide 21.6 by 5.
t^{2}+\frac{12}{5}t+\left(\frac{6}{5}\right)^{2}=4.32+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{12}{5}t+\frac{36}{25}=\frac{108+36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{12}{5}t+\frac{36}{25}=\frac{144}{25}
Add 4.32 to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{6}{5}\right)^{2}=\frac{144}{25}
Factor t^{2}+\frac{12}{5}t+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{6}{5}\right)^{2}}=\sqrt{\frac{144}{25}}
Take the square root of both sides of the equation.
t+\frac{6}{5}=\frac{12}{5} t+\frac{6}{5}=-\frac{12}{5}
Simplify.
t=\frac{6}{5} t=-\frac{18}{5}
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}