Factor
\left(5s-9\right)\left(s+9\right)
Evaluate
\left(5s-9\right)\left(s+9\right)
Share
Copied to clipboard
5s^{2}+36s-81
Multiply and combine like terms.
a+b=36 ab=5\left(-81\right)=-405
Factor the expression by grouping. First, the expression needs to be rewritten as 5s^{2}+as+bs-81. To find a and b, set up a system to be solved.
-1,405 -3,135 -5,81 -9,45 -15,27
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -405.
-1+405=404 -3+135=132 -5+81=76 -9+45=36 -15+27=12
Calculate the sum for each pair.
a=-9 b=45
The solution is the pair that gives sum 36.
\left(5s^{2}-9s\right)+\left(45s-81\right)
Rewrite 5s^{2}+36s-81 as \left(5s^{2}-9s\right)+\left(45s-81\right).
s\left(5s-9\right)+9\left(5s-9\right)
Factor out s in the first and 9 in the second group.
\left(5s-9\right)\left(s+9\right)
Factor out common term 5s-9 by using distributive property.
5s^{2}+36s-81
Combine -9s and 45s to get 36s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}