Factor
\left(s-2\right)\left(5s+3\right)
Evaluate
\left(s-2\right)\left(5s+3\right)
Share
Copied to clipboard
a+b=-7 ab=5\left(-6\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as 5s^{2}+as+bs-6. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-10 b=3
The solution is the pair that gives sum -7.
\left(5s^{2}-10s\right)+\left(3s-6\right)
Rewrite 5s^{2}-7s-6 as \left(5s^{2}-10s\right)+\left(3s-6\right).
5s\left(s-2\right)+3\left(s-2\right)
Factor out 5s in the first and 3 in the second group.
\left(s-2\right)\left(5s+3\right)
Factor out common term s-2 by using distributive property.
5s^{2}-7s-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-6\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-6\right)}}{2\times 5}
Square -7.
s=\frac{-\left(-7\right)±\sqrt{49-20\left(-6\right)}}{2\times 5}
Multiply -4 times 5.
s=\frac{-\left(-7\right)±\sqrt{49+120}}{2\times 5}
Multiply -20 times -6.
s=\frac{-\left(-7\right)±\sqrt{169}}{2\times 5}
Add 49 to 120.
s=\frac{-\left(-7\right)±13}{2\times 5}
Take the square root of 169.
s=\frac{7±13}{2\times 5}
The opposite of -7 is 7.
s=\frac{7±13}{10}
Multiply 2 times 5.
s=\frac{20}{10}
Now solve the equation s=\frac{7±13}{10} when ± is plus. Add 7 to 13.
s=2
Divide 20 by 10.
s=-\frac{6}{10}
Now solve the equation s=\frac{7±13}{10} when ± is minus. Subtract 13 from 7.
s=-\frac{3}{5}
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
5s^{2}-7s-6=5\left(s-2\right)\left(s-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{3}{5} for x_{2}.
5s^{2}-7s-6=5\left(s-2\right)\left(s+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5s^{2}-7s-6=5\left(s-2\right)\times \frac{5s+3}{5}
Add \frac{3}{5} to s by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5s^{2}-7s-6=\left(s-2\right)\left(5s+3\right)
Cancel out 5, the greatest common factor in 5 and 5.
x ^ 2 -\frac{7}{5}x -\frac{6}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = \frac{7}{5} rs = -\frac{6}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{10} - u s = \frac{7}{10} + u
Two numbers r and s sum up to \frac{7}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{5} = \frac{7}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{10} - u) (\frac{7}{10} + u) = -\frac{6}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{6}{5}
\frac{49}{100} - u^2 = -\frac{6}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{6}{5}-\frac{49}{100} = -\frac{169}{100}
Simplify the expression by subtracting \frac{49}{100} on both sides
u^2 = \frac{169}{100} u = \pm\sqrt{\frac{169}{100}} = \pm \frac{13}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{10} - \frac{13}{10} = -0.600 s = \frac{7}{10} + \frac{13}{10} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}