Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

5s^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
s^{2}=\frac{3}{5}
Divide both sides by 5.
s=\frac{\sqrt{15}}{5} s=-\frac{\sqrt{15}}{5}
Take the square root of both sides of the equation.
5s^{2}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 5\left(-3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 5\left(-3\right)}}{2\times 5}
Square 0.
s=\frac{0±\sqrt{-20\left(-3\right)}}{2\times 5}
Multiply -4 times 5.
s=\frac{0±\sqrt{60}}{2\times 5}
Multiply -20 times -3.
s=\frac{0±2\sqrt{15}}{2\times 5}
Take the square root of 60.
s=\frac{0±2\sqrt{15}}{10}
Multiply 2 times 5.
s=\frac{\sqrt{15}}{5}
Now solve the equation s=\frac{0±2\sqrt{15}}{10} when ± is plus.
s=-\frac{\sqrt{15}}{5}
Now solve the equation s=\frac{0±2\sqrt{15}}{10} when ± is minus.
s=\frac{\sqrt{15}}{5} s=-\frac{\sqrt{15}}{5}
The equation is now solved.