Solve for r
r=-3
Share
Copied to clipboard
-r-13=3\left(r+5\right)-16
Combine 5r and -6r to get -r.
-r-13=3r+15-16
Use the distributive property to multiply 3 by r+5.
-r-13=3r-1
Subtract 16 from 15 to get -1.
-r-13-3r=-1
Subtract 3r from both sides.
-4r-13=-1
Combine -r and -3r to get -4r.
-4r=-1+13
Add 13 to both sides.
-4r=12
Add -1 and 13 to get 12.
r=\frac{12}{-4}
Divide both sides by -4.
r=-3
Divide 12 by -4 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}