Solve for r
r=\frac{22+\sqrt{266}i}{5}\approx 4.4+3.261901286i
r=\frac{-\sqrt{266}i+22}{5}\approx 4.4-3.261901286i
Share
Copied to clipboard
5r^{2}-44r+120=-30
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5r^{2}-44r+120-\left(-30\right)=-30-\left(-30\right)
Add 30 to both sides of the equation.
5r^{2}-44r+120-\left(-30\right)=0
Subtracting -30 from itself leaves 0.
5r^{2}-44r+150=0
Subtract -30 from 120.
r=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 5\times 150}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -44 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-44\right)±\sqrt{1936-4\times 5\times 150}}{2\times 5}
Square -44.
r=\frac{-\left(-44\right)±\sqrt{1936-20\times 150}}{2\times 5}
Multiply -4 times 5.
r=\frac{-\left(-44\right)±\sqrt{1936-3000}}{2\times 5}
Multiply -20 times 150.
r=\frac{-\left(-44\right)±\sqrt{-1064}}{2\times 5}
Add 1936 to -3000.
r=\frac{-\left(-44\right)±2\sqrt{266}i}{2\times 5}
Take the square root of -1064.
r=\frac{44±2\sqrt{266}i}{2\times 5}
The opposite of -44 is 44.
r=\frac{44±2\sqrt{266}i}{10}
Multiply 2 times 5.
r=\frac{44+2\sqrt{266}i}{10}
Now solve the equation r=\frac{44±2\sqrt{266}i}{10} when ± is plus. Add 44 to 2i\sqrt{266}.
r=\frac{22+\sqrt{266}i}{5}
Divide 44+2i\sqrt{266} by 10.
r=\frac{-2\sqrt{266}i+44}{10}
Now solve the equation r=\frac{44±2\sqrt{266}i}{10} when ± is minus. Subtract 2i\sqrt{266} from 44.
r=\frac{-\sqrt{266}i+22}{5}
Divide 44-2i\sqrt{266} by 10.
r=\frac{22+\sqrt{266}i}{5} r=\frac{-\sqrt{266}i+22}{5}
The equation is now solved.
5r^{2}-44r+120=-30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5r^{2}-44r+120-120=-30-120
Subtract 120 from both sides of the equation.
5r^{2}-44r=-30-120
Subtracting 120 from itself leaves 0.
5r^{2}-44r=-150
Subtract 120 from -30.
\frac{5r^{2}-44r}{5}=-\frac{150}{5}
Divide both sides by 5.
r^{2}-\frac{44}{5}r=-\frac{150}{5}
Dividing by 5 undoes the multiplication by 5.
r^{2}-\frac{44}{5}r=-30
Divide -150 by 5.
r^{2}-\frac{44}{5}r+\left(-\frac{22}{5}\right)^{2}=-30+\left(-\frac{22}{5}\right)^{2}
Divide -\frac{44}{5}, the coefficient of the x term, by 2 to get -\frac{22}{5}. Then add the square of -\frac{22}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{44}{5}r+\frac{484}{25}=-30+\frac{484}{25}
Square -\frac{22}{5} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{44}{5}r+\frac{484}{25}=-\frac{266}{25}
Add -30 to \frac{484}{25}.
\left(r-\frac{22}{5}\right)^{2}=-\frac{266}{25}
Factor r^{2}-\frac{44}{5}r+\frac{484}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{22}{5}\right)^{2}}=\sqrt{-\frac{266}{25}}
Take the square root of both sides of the equation.
r-\frac{22}{5}=\frac{\sqrt{266}i}{5} r-\frac{22}{5}=-\frac{\sqrt{266}i}{5}
Simplify.
r=\frac{22+\sqrt{266}i}{5} r=\frac{-\sqrt{266}i+22}{5}
Add \frac{22}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}