Solve for r
r=-\frac{4}{5}=-0.8
r=4
Share
Copied to clipboard
5r^{2}-16-16r=0
Subtract 16r from both sides.
5r^{2}-16r-16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-16 ab=5\left(-16\right)=-80
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5r^{2}+ar+br-16. To find a and b, set up a system to be solved.
1,-80 2,-40 4,-20 5,-16 8,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -80.
1-80=-79 2-40=-38 4-20=-16 5-16=-11 8-10=-2
Calculate the sum for each pair.
a=-20 b=4
The solution is the pair that gives sum -16.
\left(5r^{2}-20r\right)+\left(4r-16\right)
Rewrite 5r^{2}-16r-16 as \left(5r^{2}-20r\right)+\left(4r-16\right).
5r\left(r-4\right)+4\left(r-4\right)
Factor out 5r in the first and 4 in the second group.
\left(r-4\right)\left(5r+4\right)
Factor out common term r-4 by using distributive property.
r=4 r=-\frac{4}{5}
To find equation solutions, solve r-4=0 and 5r+4=0.
5r^{2}-16-16r=0
Subtract 16r from both sides.
5r^{2}-16r-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\left(-16\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -16 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-16\right)±\sqrt{256-4\times 5\left(-16\right)}}{2\times 5}
Square -16.
r=\frac{-\left(-16\right)±\sqrt{256-20\left(-16\right)}}{2\times 5}
Multiply -4 times 5.
r=\frac{-\left(-16\right)±\sqrt{256+320}}{2\times 5}
Multiply -20 times -16.
r=\frac{-\left(-16\right)±\sqrt{576}}{2\times 5}
Add 256 to 320.
r=\frac{-\left(-16\right)±24}{2\times 5}
Take the square root of 576.
r=\frac{16±24}{2\times 5}
The opposite of -16 is 16.
r=\frac{16±24}{10}
Multiply 2 times 5.
r=\frac{40}{10}
Now solve the equation r=\frac{16±24}{10} when ± is plus. Add 16 to 24.
r=4
Divide 40 by 10.
r=-\frac{8}{10}
Now solve the equation r=\frac{16±24}{10} when ± is minus. Subtract 24 from 16.
r=-\frac{4}{5}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
r=4 r=-\frac{4}{5}
The equation is now solved.
5r^{2}-16-16r=0
Subtract 16r from both sides.
5r^{2}-16r=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{5r^{2}-16r}{5}=\frac{16}{5}
Divide both sides by 5.
r^{2}-\frac{16}{5}r=\frac{16}{5}
Dividing by 5 undoes the multiplication by 5.
r^{2}-\frac{16}{5}r+\left(-\frac{8}{5}\right)^{2}=\frac{16}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{16}{5}r+\frac{64}{25}=\frac{16}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{16}{5}r+\frac{64}{25}=\frac{144}{25}
Add \frac{16}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r-\frac{8}{5}\right)^{2}=\frac{144}{25}
Factor r^{2}-\frac{16}{5}r+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{8}{5}\right)^{2}}=\sqrt{\frac{144}{25}}
Take the square root of both sides of the equation.
r-\frac{8}{5}=\frac{12}{5} r-\frac{8}{5}=-\frac{12}{5}
Simplify.
r=4 r=-\frac{4}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}